Hermitian Matrices, Eigenvalue Multiplicities, and Eigenvector Components

نویسندگان

  • Charles R. Johnson
  • Brian D. Sutton
چکیده

Given an n-by-n Hermitian matrix A and a real number λ, index i is said to be Parter (resp. neutral, downer) if the multiplicity of λ as an eigenvalue of A(i) is one more (resp. the same, one less) than that in A. In case the multiplicity of λ in A is at least 2 and the graph of A is a tree, there are always Parter vertices. Our purpose here is to advance the classification of vertices and, in particular, to relate classification to the combinatorial structure of eigenspaces. Some general results are given and then used to deduce some rather specific facts, not otherwise easily observed. Examples are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum: Pseudo-hermiticity for a Class of Nondiagonalizable Hamiltonians

Theorem 2: Let H be as in Theorem 1 of Ref. [2]. Then H is pseudo-Hermitian if and only if it is Hermitian with respect to an inner product 〈〈 , 〉〉 that supports a positivesemidefinite basis [3] including the eigenvectors of H . In particular, for every eigenvector ψ of H , 〈〈ψ|ψ〉〉 ≥ 0; if the corresponding eigenvalue is real and nondefective (algebraic and geometric multiplicities are equal), ...

متن کامل

On Eigenvector Bounds

There are methods to compute error bounds for a multiple eigenvalue together with an inclusion of a basis of the corresponding invariant subspace. Those methods have no restriction with respect to the structure of Jordan blocks, but they do not provide an inclusion of a single eigenvector. In this note we first show under general assumptions that a narrow inclusion of a single eigenvector is no...

متن کامل

On an Eigenvector-Dependent Nonlinear Eigenvalue Problem

We first provide existence and uniqueness conditions for the solvability of an algebraic eigenvalue problem with eigenvector nonlinearity. We then present a local and global convergence analysis for a self-consistent field (SCF) iteration for solving the problem. The well-known sin Θ theorem in the perturbation theory of Hermitian matrices plays a central role. The near-optimality of the local ...

متن کامل

Eigenvector Distribution of Wigner Matrices

We consider N×N Hermitian or symmetric random matrices with independent entries. The distribution of the (i, j)-th matrix element is given by a probability measure νij whose first two moments coincide with those of the corresponding Gaussian ensemble. We prove that the joint probability distribution of the components of eigenvectors associated with eigenvalues close to the spectral edge agrees ...

متن کامل

The Unsymmetric Eigenvalue Problem

The superscript H refers to the Hermitian transpose, which includes transposition and complex conjugation. That is, for any matrix A, AH = AT . An eigenvector of A, as defined above, is sometimes called a right eigenvector of A, to distinguish from a left eigenvector. It can be seen that if y is a left eigenvector of A with eigenvalue λ, then y is also a right eigenvector of AH , with eigenvalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2004